MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/21

Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9709	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9709	21

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		ge 4	Mark Scheme Syllabus		Paper	
			GCE AS LEVEL – May/June 2014	9709	21	
1	or pa Atte Obta		e or imply non-modular inequality $(3x-2)^2 > (x+4)^2$ or co air of linear equations mpt solution of 3-term quadratic equation or of 2 linear equ ain critical values $-\frac{1}{2}$ and 3 e answer $x < -\frac{1}{2}$, $x > 3$		on B1 M1 A1 A1	[4]
	<u>Or</u>	Obta Obta	an critical value $x = 3$ from graphical method, inspection, each in critical value $x = -\frac{1}{2}$ similarly the answer $x < -\frac{1}{2}$, $x > 3$	quation	B1 B2 B1	[4]
2	(i)	Obtain co	iate to obtain form $k_1 \cos x + k_2 \sec^2 2x$ prrect second term $2\sec^2 2x$ $\cos x + 2\sec^2 2x$ and hence answer 5		M1 A1 A1	[3]
	(ii)		iate to obtain form $ke^{2x}(1+e^{2x})^{-2}$ prrect $-12e^{2x}(1+e^{2x})^{-2}$ or equivalent (may be implied)		M1 A1 A1	[3]
3	(i)	an identit Obtain at	least as far as x term in quotient, use synthetic division corry least $6x^2 - x$ notient $6x^2 - x - 2$ and confirm remainder is 7 (AG)	rectly or make use	of M1 A1 A1	[3]
	(ii)	(may be in Obtain tw	ation in form $(x^2 - 4)(6x^2 + kx - 2) = 0$, any constant <i>k</i> mplied) yo of the roots -2 , 2 , $-\frac{1}{2}$, $\frac{2}{3}$ maining two roots and no others		M1 A1 A1	[3]
4	(i)	Indicate the	howing the correct shape of each, $y = 3 \ln x$ and $y = 15 - x^3$ he correct intercepts (1,0) and (0,15) one real root from two correct sketches		B1 B1 B1	[3]
	(ii)		sign of $3\ln x + x^3 - 15$ for 2.0 and 2.5 or equivalent onclusion with correct calculations (-4.9 and 3.4 or equivalent)	ents)	M1 A1	[2]
	(iii)	Obtain fir Show suf	teration process correctly at least once nal answer 2.319 ficient iterations to 5 decimal places to justify answer or sho ral (2.3185, 2.3195)	ow a sign change ir	M1 A1 A1	[3]
5	(i)	Use sin 2	eft-hand side as a single fraction $\theta = 2\sin\theta\cos\theta$ at some point e proof with no errors seen (AG)		M1 B1 A1	[3]

Pag		ge 5	Mark Scheme	Syllabus	Paper	r
			GCE AS LEVEL – May/June 2014	9709	21	
	(ii)	(a) State $\frac{2}{\sin \frac{1}{4}\pi}$ or equivalent			B1	[2]
		Obta	in $2\sqrt{2}$ or exact equivalent (dependent on first B1)		B1	[2]
			e or imply $k \sin 2\theta$ for any k		B1	
		Integ	grate to obtain $-\frac{3}{2}\cos 2\theta$		B1	
		Subs	titute both limits correctly to obtain 3		B1	[3]
6	(a)	Integrate	to obtain form $k \ln(2x-7)$		M1	
			prrect $3\ln(2x-7)$		A1	
	Substitu		e limits correctly (dependent on first M1)		DM1	
			for logarithm of a quotient or power (dependent on first M1)		DM1	[7]
		Confirm	ln125 following correct work and sufficient detail (AG)		A1	[5]
	(b)		<i>y</i> at (1), 5, 9, 13, 17		M1	
			ct formula, or equivalent, with $h = 4$ and five <i>y</i> -values		M1	[2]
		Obtain 13			A1	[3]
7	(i)	Obtain 3	$y + 3x \frac{dy}{dx}$ as derivative of $3xy$		B1	
		Obtain 2	$y \frac{dy}{dx}$ as derivative of y^2		B1	
			$+3y + 3x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$		B1	
		Substitute	e 2 and -1 to find gradient of curve (dependent on at least on ation of tangent through $(2, -1)$ with numerical gradient	e B1)	M1	
			nt on previous M1)		DM1	
		Obtain 52	x + 4y - 6 = 0 or equivalent of required form		A1	[6]
	(ii)	Use $\frac{dy}{dx} =$	0 to find relation between x and y			
		· •	nt on at least one B1 from part(i))		M1	
			x + 3y = 0 or equivalent		A1	
			e for x or y in equation of curve $\frac{1}{2}$ 2 are an inductive descended as the formula of the second sec	- 1	M1	F 4 7
		Obtain –	$\frac{1}{8}y^2 = 3$ or $-\frac{2}{9}x^2 = 3$ or equivalent and conclude appropriate	tery	A1	[4]